CUTTING UP GRAPHS

M. J. DUNWOODY

Received 25 August 1981

Let Γ be infinite connected graph with more than one end. It is shown that there is a subset $d \subset V\Gamma$ which has the following properties. (i) Both d and $d^* = V\Gamma \setminus d$ are infinite. (ii) There are only finitely many edges joining d and d^* . (iii) For each $g \in \operatorname{Aut} \Gamma$ at least one of $d \subset dg$, $d^* \subset dg$, $d \subset d^*g$, $d^* \subset d^*g$ holds. Any group acting on Γ has a decomposition as a free product with amalgamation or as an HNN-group.

1. Introduction

Let Γ be an infinite connected graph. Note that it is not assumed that Γ is locally finite. The number $e(\Gamma)$ of ends of Γ is defined to be the least upper bound (possibly ∞) of the number of connected components with infinitely many vertices that can be obtained by removing finitely many edges. Thus $e(\Gamma) > 1$ if and only if there is a subset $c \subset V$ such that both c and $c^* = V\Gamma \setminus c$ are infinite and

$$\delta c = \{e \in E\Gamma | \text{ one vertex of } e \text{ lies in } c \text{ and one in } c^*\}$$

is finite.

A subset $c \subset V\Gamma$ such that δc is finite is called a *cut*. Note that this is not standard terminology. A cut is said to be *non-trivial* if both c and c^* are infinite. If c, d are cuts then so are $c \cap d$ and $c \cup d$. In this paper we prove the following.

Theorem 1.1. Let Γ be a graph with more than one end. There exists a non-trivial cut $d \subset V\Gamma$ such that for any $g \in \operatorname{Aut} \Gamma$ one of the inclusions

$$d \subset dg$$
, $d \subset d^*g$, $d^* \subset dg$, $d^* \subset d^*g$

holds.

As an application it is shown that if G is any group acting on Γ , then G has a decomposition $G = A *_{C} B$ as a free product with amalgation or as an HNN group $G = \operatorname{gp}(A, t | t^{-1}Ct = D)$ where C, D are isomorphic subgroups of A and in both cases C is the stabilizer of d and each of the stabilizers of the directed edges of δd is a subgroup of finite index in C. This decomposition will be a proper decomposition, i.e. if $G = A *_{C} B$ then $C \neq A$ and $C \neq B$, if Γ/G is finite. This generalizes the Stallings

AMS subject classification (1980): 05 C 25, 20 F 05

structure theorem [5.5A9]. More generally the decomposition is proper if and only if there exists $g \in G$ such that dg properly contains d.

Theorem 1.1 can be used to derive results about splitting an n-manifold along an (n-1)-manifold [1]. It has also been used by H. D. Macpherson to classify infinite distance transitive graphs with finite valency [4].

2. Narrow cuts

Let Γ be a connected graph with more than one end so that non-trivial cuts exist. Let c be a cut. Let $w(c) = |\delta c|$. Let k be the minimal value of w(c) for c non-trivial. A cut is called narrow if w(c) = k. The following statements are proved in [5, p. 50—51].

2.1. Let $c_1 \supset c_2 \supset ...$ be a descending sequence of narrow cuts. Suppose

$$b=\bigcap_{n=1}^{\infty}c_n\neq\emptyset,$$

then $b=c_n$ for some n.

- **2.2.** There is a narrow cut c which is minimal with respect to containing a fixed $v \in V\Gamma$. That is if b is narrow and $v \in b \subset c$ then b = c.
- **2.3.** If c is narrow and minimal with respect to containing $v \in V\Gamma$ and b is a narrow cut then at least one of $c \cap b$, $c \cap b^*$, $c^* \cap b$, $c^* \cap b^*$ is finite.

Part of the following result is also obtained by Stallings [5, p. 52].

2.4. Let b, c be narrow cuts such that $b \cap c$ and $b^* \cap c^*$ are both infinite. Then $b \cap c$ and $b^* \cap c^*$ are narrow. Exactly half the edges of $b \cap c^*$ lie in δb and the other half lie in δc . No edge of $\delta(b \cap c^*)$ lies in both δb and δc .

Proof. In Fig. 1 the Greek letters indicate the number of edges of $E\Gamma$ connecting the various pairs of sets as shown. Thus for instance there are ϱ edges with one vertex in $b \cap c$ and one vertex in $b^* \cap c^*$.

From Fig. 1, we see that

$$k = w(b) = \alpha + \varrho + \tau + \gamma$$

$$k = w(c) = v + \varrho + \tau + \beta.$$

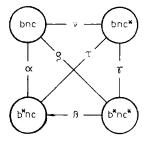


Fig. 1

We know that $b \cap c$ and $b^* \cap c^*$ are non-trivial cuts. Hence

 $k \leq w(b \cap c) = \alpha + \varrho + v$

and

 $k \leq w(b^* \cap c^*) = \beta + \varrho + \gamma.$

Hence

 $\tau + \gamma \leq \nu$ and $\nu + \tau \leq \gamma$.

It follows easily that $\tau = 0$ and $\gamma = v$, as required.

Let N be the set of narrow cuts in Γ .

2.5. Let $e \in E\Gamma$. There are only finitely many $b \in N$ such that $e \in \delta b$.

Proof. Let v be one of the vertices of e. Let

$$N_1 = \{b \in N | v \in b \text{ and } e \in \delta b\}.$$

Let $b, c \in N_1$. Suppose $b \cap c$ is finite, then $b \cap c^*$ and $b^* \cap c$ are both infinite. By 2.4 no edge of $\delta(b \cap c)$ lie in both δb and δc . But $e \in \delta b \cap \delta c \cap \delta(b \cap c)$ which is a contradiction. Thus $b \cap c$ is infinite. Similarly $b^* \cap c^*$ is infinite. Again it follows from 2.4 that $b \cap c$ and $b^* \cap c^*$ are narrow. Note that $b^* \cap c^* = (b \cup c)^*$. Thus $b \cup c$ is narrow. It can be seen that N_1 is a lattice. It follows from 2.1 that N_1 has unique minimal element d_0 . Let $N_1^* = \{b^* | b \in N_1\}$. Each element of N_1^* contains w, the other vertex of e. Hence N_1^* contains a unique minimal element and so N_1 contains a unique maximal element d_1 . Choose a maximal chain $d_0 = b_1 \subset b_2 \subset ... \subset b_m = d_1$ of elements of N_1 . Such a chain exists by 2.1. Let $b \in N_1$. Let $r = \max\{i | b_i \subset b\}$ and $s = \min\{j | b \subset b_j\}$. We show by induction on s-r that every edge of δb is contained in δb_i for some i. If s-r=0, then $b=b_r=b_s$. If not $b_r\subset b\subset b_s$. Let $b'=b\cup b_{r+1}$. Then by the induction hypothesis, every edge of $\delta b'$ is contained in δb_i for some i. Also $b \cap b_{r+1} = b_r$ and $b \cup b_{r+1} = b'$ and it can be seen from Fig. 1 that every edge of δb lies in at least one of δb_r , δb_{r+1} or $\delta b'$. Hence every edge of δb lies in some δb_i . It follows that there are only finitely many possibilities for δb . But a cut b is determined by δb together with an orientation of the edges of δb . Thus there are only finitely many possibilities

2.6. Let $c \in N$. There are only finitely many $b \in N$ which do not satisfy one of

$$b \subset c$$
, $b^* \subset c$, $b \subset c^*$, $b^* \subset c^*$.

Proof. Let F be a finite connected subgraph of Γ containing each edge of δc . Suppose $\delta b \cap EF = \emptyset$. Since F is connected this means that $VF \subset b$ or $VF \subset b^*$. Suppose that $VF \subset b$. Referring back to Fig. 1 we see that $\varrho = \tau = \beta = 0$ and so $\varrho = \tau = \beta = 0$ and so $\varrho = \tau = \beta = 0$ and so $\varrho = \tau = \beta = 0$ and so $\varrho = \tau = \beta = 0$ and so $\varrho = \tau = \beta = 0$ and so $\varrho = \tau = \beta = 0$ and $\varrho = \tau = \beta = 0$ and $\varrho = \tau = \beta = 0$ or $\varrho = \tau = \beta = 0$, i.e. $\varrho = \tau = \beta = 0$ or $\varrho = \tau = 0$ or $\varrho = \tau = 0$ or $\varrho = \tau = 0$, i.e. $\varrho = \tau = 0$ or $\varrho = 0$ or $\varrho = \tau = 0$ or

Write $b \subset {}^a c$ if $b \setminus c$ is finite. Write $b = {}^a c$ if $b \subset {}^a c$ and $c \subset {}^a b$. Let $\hat{c} = \{b \in N | c \subset {}^a b\}$.

2.7. Either $\hat{c} = \emptyset$ or $\hat{c} = {}^{a}c$ and $\hat{c} \in N$.

Proof. If $c \subset b$ then $b \cap c \in N$ and $b \cap c = c$. Thus $\hat{c} = \bigcap \{b \in N | b = c\}$. But $N_c = \{b \in N | b = c\}$ is a lattice by 2.4. By 2.1 if $\hat{c} \neq \emptyset$ then \hat{c} is the unique minimal element of N_c .

Let $c \in N$ be a cut for which $\hat{c} \neq \emptyset$ and $\widehat{c}^* \neq \emptyset$. For any $v \in V\Gamma$ let

$$A(v, c) = \{b \in N | v \in b \subset {}^{\mathbf{a}} c\}.$$

2.8. The set A(v, c) is finite.

Proof. If $b \subset {}^a c$ then $c^* \subset {}^a b^*$. Hence $\widehat{c^*} \subset b^*$ and $b \subset (\widehat{c^*})^* = d$. Let F be a connected finite subgraph of F containing v and an edge of δd . Since $v \in b \subset d$, δb must contain an edge of F. By 2.5 there are only finitely many such b.

Let
$$\alpha(v, c) = |A(v, c)|$$
. Put

$$c^0 = \{v | \alpha(v, c) > \alpha(v, c^*)\}.$$

Let $\bar{c} = ((c^*)^0)^*$. Thus if $v \in \bar{c}$, $v \in (c^*)^0$. Hence $\alpha(r, c^*) \leq \alpha(v, c)$, i.e.

$$\bar{c} = \{v | \alpha(v, c) \ge \alpha(v, c^*)\}.$$

We see that $c^0 \subset \bar{c}$.

2.9. The following inclusions are satisfied,

$$\widehat{c} \subset c^0 \subset \overline{c} \subset (\widehat{c^*})^*.$$

Also $c^0 = {}^{\mathrm{a}}c$.

Proof. Let $v \in \hat{c}$. Suppose $b \in A(v, c^*)$. Then $b \subset {}^a c^*$, i.e. $c \subset {}^a b^*$. But this means that $\hat{c} \subset b^*$ and so $v \notin b$ which is a contradiction. Thus $\alpha(v, c^*) = 0$. However $\hat{c} \in A(v, c)$ and so $\alpha(v, c) \ge 1$. Thus $\hat{c} \subset c^0$. Similarly $\widehat{c^*} \subset (c^*)^0$ and hence $\overline{c} \subset (\widehat{c^*})^*$. But $\hat{c} = {}^a c$ and $\widehat{(c^*)}^* = {}^a c$ by 2.7. Therefore $c^0 = {}^a c$ and the proof of 2.9 is complete.

Let $b \in N$ be another cut for which $\hat{b} \neq 0$ and $(\hat{b}^*)^* \neq 0$. Note that if $g \in \text{Aut } \Gamma$ then b = cg will have this property.

2.10. If $c \subset {}^ab$ then $c^0 \subset b^0$ and $\bar{c} \subset \bar{b}$. If $c \subset {}^ab$ but $c \neq {}^ab$, then $\bar{c} \subset b^0$.

Proof. If $c\subset ab$ then $A(v,c)\subset A(v,b)$ and $A(v,b^*)\subset A(v,c^*)$. Thus $\alpha(v,c)\leqq \leqq \alpha(v,b)$ and $\alpha(v,b^*) \triangleq \alpha(v,c^*)$. It follows immediately that $c^0\subset b^0$ and $\bar{c}\subset \bar{b}$. If c=ab then $\hat{c}=\hat{b}$ and $c^0=b^0$. Suppose $\alpha(v,c)=\alpha(v,c^*)$, that is $v\in \bar{c}\setminus c^0$. By 2.9 $v\notin \hat{c}$. Now $\hat{c}^*\in A(v,c^*)$ and $\hat{c}^*\notin A(v,b^*)$ if \hat{b} properly contains \hat{c} . Thus $\alpha(v,b^*)<\alpha(v,c^*)$. Hence $v\in b^0$. It follows that $\bar{c}\subset b^0$ if $c\subset ab$ but $c\neq ab$.

3. Proof of Theorem 1.1

We know from 2.2 that there exists $c \in N$ such that for any $b \in N$ one of $b \cap c$, $b^* \cap c$, $b \cap c^*$, $b^* \cap c^*$ is finite.

Case 1. $\hat{c} \neq \emptyset$, $\widehat{c}^* \neq \emptyset$.

3.1. Let $g \in \text{Aut } \Gamma$ and $d = c^0$ then at least one of $d \cap dg$, $d^* \cap dg$, $d \cap d^*g$, $d^* \cap d^*g$ is empty.

Proof. Suppose $c \subseteq {}^a cg$, then $c^0 \subseteq (cg)^0$. But $(cg)^0 = c^0 g$. Hence $d \subseteq dg$. Similarly if $c^* \subseteq {}^a c^* g$ then $\overline{c^*} \subseteq \overline{c^* g}$. However $\overline{c^*} = (c^0)^* = d^*$ and so $d^* \subseteq d^* g$. If $c^* = {}^a cg$, then $(cg)^0 \subseteq \overline{c^*}$ by 2.9. Thus $dg \subseteq d^*$. If $\underline{c^*} \subseteq {}^a cg$ but $c^* \neq {}^a cg$ then, by 2.10, $\overline{c^*} \subseteq (cg)^0$ and so $d^* \subseteq dg$. If $c \subseteq {}^a c^* g$, then $c^0 \subseteq \overline{c^* g}$ and so $d \subseteq d^* g$.

Case 2.
$$\hat{c} = \emptyset$$
, $\widehat{c^*} = \emptyset$.

3.2. For every $b \in N$ either $b = {}^{a}c$ or $b = {}^{a}c^{*}$.

Proof. Suppose $b \subset {}^a c$. We know that the set $N_c = \{d \in N | d = {}^a c\}$ is closed under finite intersections and that $\bigcap \{d \in N_c\} = \emptyset$. Now N_c is infinite and so it contains a cut d for which one of

$$d \subset b$$
, $d^* \subset b$, $d \subset b^*$, $d^* \subset b^*$

holds by 2.6. We can also assume that d does not contain a particular vertex of b and so $d^* \subset b^*$ is impossible. Also $b \subset ac = ad$, and so $d \subset b^*$ and $d^* \subset b$ are impossible. Thus $d \subset b$ and b = ac. The other cases $(b^* \subset ac, b \subset ac^*, b^* \subset ac^*)$ are all treated similarly.

In fact it is fairly easy to show that Γ has 2 ends, i.e. for every nontrivial cut b either $b={}^{a}c$ or $b={}^{a}c^{*}$.

If $b, d \in N$ write $b \le d$ if $b = {}^ab$ and $|b \setminus d| \le |d \setminus b|$. It is easy to show that \le is transitive. There may be distinct cuts b, d for which $b \le d$ and $d \le b$.

Let $G = \operatorname{Aut} \Gamma$. Let $H = \{h \in G | ch = {}^{a}c\}$. Now H is a subgroup of G and $(G:H) \le 2$. Let

$$H^- = \{h \in H | ch \le c\}$$

and

$$H^+ = \{h \in H | c \le ch\}.$$

It is easy to see that H^- and H^+ are closed under multiplication. Let

$$d = \bigcup \{ch|h\in H^-\}$$

3.3. The subset d is a narrow cut and $d={}^{a}c$.

Proof. It follows from 2.6 that the set

$$S = \{b \in N | b \le c \text{ and } b \subset c\}$$

is finite. But $d=c \cup \{ch \in S | h \in H\}$, Thus d is the union of finitely many cuts ch for each of which $ch={}^{a}c$. It follows from 2.4 that $d \in N$ and $d={}^{a}c$.

3.4. If $h \in H$, then either $dh \subset d$ or $d \subset dh$

Proof. If $h \in H^-$ then $dh \subset d$. If $h \in H^+$ then $h^{-1} \in H^-$ and so $dh^{-1} \subset d$, i.e. $d \subset dh$. If $b = {}^a c$ and $ch \le c$ then $bh \le b$. To see this note that $ch \le c$ means that $\int (c-ch) \ge 0$. Here we identify a set with its characteristic function. For any function $f: V\Gamma \to Z$ which has finite support $\int (f-fh)=0$. But b-c has finite support and so $\int (c-ch) = \int (b-bh)$.

Suppose $G \neq H$. Let $x \in G \setminus H$ and let $h \in H$. Now

$$\int (c - cxhx^{-1}) = \int (cx - cxh)$$
$$= \int (c^* - c^*h)$$
$$= -\int (c - ch).$$

Thus if $h \in H^+$, then $xhx^{-1} \in H^-$. But $x^2 \in H$ and x^2 commutes with x and so $x^2 \in H^+ \cap H^-$. Thus $dx^2 = d$. If dh = d for every $h \in H$ put $d_1 = d \cap d^*x$. Now xh = h'x for some $h' \in H$. Hence $d^*xh = d^*x$ and $d_1h = d$. Also $d_1x \cap d_1 = \emptyset$. Thus for any $g \in G$ either $d_1g = d_1$ or $d_1g \cap d_1 = \emptyset$.

Suppose finally that there exists $h \in H$ such that $dh \neq d$. Choose $y \in H^+$ so that dy - d has the smallest possible non-zero number of elements. Put $d_i = dy^i$. If $g \in G$ then $dg = d_i$ or $d_i x$ for some $i \in \mathbb{Z}$. Let $u_i = d_i \cap d_i^* x$ and let

$$u = \bigcup \{u_i | i \in \mathbf{Z}\}.$$

First we show that $u \cap ux = \emptyset$. Now $ux = \bigcup \{u_i x | i \in \mathbb{Z}\}$. It suffices to show that $u_i \cap u_i x = \emptyset$ for any i, j. Since $u_i x^2 = u_i$ we can assume $i \leq j$. But

$$u_i \cap u_i x = d_i \cap d_i^* x \cap d_i^* \cap d_i x = \emptyset$$

since $d_i \subset d_i$. Next we show that $(ux)^* = u^*x \subset uy$. Now

$$u^*x = \bigcap \{u_i^*x | i \in \mathbf{Z}\}\$$

= \Gamma\{(d_i^* \cup d_i x)x | i \in \bar{\mathbf{Z}}\}\)
= \Gamma\{d_i^*x \cup d_i | i \in \bar{\mathbf{Z}}\}.

Let $v \in u^*x$. We know that $d_i \subset d_j$ if $i \leq j$ and $\bigcap \{d_i | i \in \mathbb{Z}\} = \emptyset$ and $\bigcup \{d_i | i \in \mathbb{Z}\} = V\Gamma$. Thus there is a smallest integer m such that $v \in d_m$ but $v \notin d_{m-1}$. However $v \in d_{m-1}^*x \cup \bigcup d_{m-1}$ and so $v \in d_{m-1}^*x$. Next note that $d_i xy = d_i y^{-1}x = d_{i-1}x$. Thus

$$uy = \bigcup \{u_i y | i \in \mathbf{Z}\}\$$

$$= \bigcup \{d_i y \cap d_i^* x y | i \in \mathbf{Z}\}\$$

$$= \bigcup \{d_{i+1} \cap d_{i-1}^* x | i \in \mathbf{Z}\}.$$

Now $v \in d_m \subset d_{m+1}$ and so $v \in d_{m+1} \cap d_{m-1}^* x$. Hence $v \in uy$. Thus $u^*x \subset uy$. From these inclusions we obtain the sequence

$$u \subset u^*x \subset uy \subset u^*xy \subset uy^2 \subset u^*xy^2 \subset \dots$$

It follows that for any $g \in G$ one of the inclusions

$$u \subset ug$$
, $u^* \subset ug$, $u \subset u^*g$, $u^* \subset u^*g$

holds.

Case 3.
$$\hat{c} = \emptyset$$
, $\hat{c}^* \neq \emptyset$.

As in 3.2 it can be shown that if $b \in N$ and $b \subset c$ then b = c. Write $b \sim d$ if $|b \setminus d| = |d \setminus b|$ and b = d. Thus $b \sim d$ if $b \leq d$ and $d \leq b$.

There is no $g \in G$ for which $c^*g \subset a^c$, since this would mean that $\widehat{c^*} = \emptyset$. Suppose $c \subset a^c$ then $cg^{-1} \subset a^c$ and so $c = a^c$. If $cg \ge c$ but not $cg \sim c$ then $|cg^k \setminus c|$ can be made arbitrarily large by choosing k large enough. But $cg^k \subset (\widehat{c^*})^* = a^c$. Hence $cg \le c$. But then $c \le cg^{-1}$ and we again have a contradiction unless $c \sim cg$. Similarly if $cg \subset a^c$ then $c \sim cg$. Thus for each $g \in G$ either $cg \sim c$ or $cg \subset a^c$. Let $N' = \{cg, c^*g \mid g \in G\}$. Put

 $d = \bigcap \{b \in N' | c \subset {}^{a}b\}.$

Using 2.6 it can be shown that there are only finitely many $b \in N'$ for which $c \subset {}^a b$ but not $c \subset b$. Thus $d \in N$ by 2.4 and $d = {}^a c$. If $cg \sim c$ then the action of g permutes the set $\{b \in N' | c \subset {}^a b\}$. Hence dg = d. If $cg \subset {}^a c^*$ then $c \subset {}^a c^* g^{-1}$ and so $d \subset c^* g^{-1}$. But $d \subset c$ and so $dg \subset c^* \subset d^*$. Thus for any $g \in G$ either dg = d or $dg \subset d^*$.

Case 4.
$$\hat{c} \neq \emptyset$$
. $\widehat{c}^* = \emptyset$.

This case can be treated as Case 3 with c^* replacing c.

Every case has now been considered and so the proof of Theorem 1.1 is complete.

4. Applications

Let (E, \leq) be a partially ordered set with a mapping $E \rightarrow E$, $e \rightarrow \bar{e}$ for which $\bar{e} = e$, satisfying the following conditions

- (1) if $e \le f$ then $\bar{f} \le \bar{e}$
- (2) if $e \le f$, there are only finitely many $h \in E$ for which $e \le h \le f$;
- (3) for any pair e, f at least one of $e \le f$, $e \le \overline{f}$, $\overline{e} \le f$, $\overline{e} \le \overline{f}$ holds;
- (4) for no pair e, f is $e \le f$ and $\bar{e} \le f$.
- (5) for no pair e, f is $e \le f$ and $e \le \tilde{f}$.

It is shown in [3, Theorem 2.1] that there exists a tree T for which E is the directed edge set and the order on E is such that if $e \le f$ then there is an edge path of directed edges in T

$$e = e_1, e_2, ..., e_n = f$$

where the last vertex of e_i is the first vertex of e_{i+1} for $i=1,\ldots,n-1$.

Theorem 4.1. Let the group G act on the graph Γ and suppose $e(\Gamma)>1$. Then G acts on a tree T in such a way that T/G has one edge. The stabilizer of each edge of T contains the stabilizer of a directed edge of Γ as a subgroup of finite index.

Proof. By Theorem 1.1 there exists a non-trivial cut $d \subset V\Gamma$ such that for each $g \in G$ one of

$$d \subset dg$$
, $d \subset d^*g$, $d^* \subset dg$, $d^* \subset d^*g$

holds. Let $E = \{dg, d^*g | g \in G\}$. Put $\bar{e} = e^*$ for $e \in E$. Clearly (E, \subset) satisfies conditions (1), (3), (4) and (5) above. We need also to show that condition (2) is satisfied. If d is narrow then condition (2) is satisfied using 2.2. It can be seen from the proof of Theorem 1.1 that d is narrow in Cases 2, 3 and 4. In Case 1 it can also be shown that d is narrow. However it is not necessary to do this in order to prove that condition (2) is satisfied. Thus in Case 1 we know that d = c and $c \neq 0$ and $c \neq 0$.

Suppose $e, f \in E$ and $e \subset f$. If $h \in E$ then h = dg or d^*g for some $g \in G$. Suppose $e \subset h \subset f$. Let

 $\hat{h} = \bigcap \{b \in N \mid h \subset a \}.$

Then $\hat{h} \in N$ and $\hat{e} \subset \hat{h} \subset \hat{f}$. Thus there are only finitely many possibilities for \hat{h} . Similarly there are only finitely many possibilities for \hat{h}^* . But

$$h = {}^{a} \hat{h} \subset h \subset (\widehat{h^*})^* = {}^{a} h$$

by 2.9. Thus there are only finitely many possibilities for h, and so condition (2) is satisfied.

Thus E is the directed edge set of a tree T and there is an action of G on T. It may be the case that for some $g \in G$, $dg = d^*$, in which case T/G will not be a graph. However this difficulty can be overcome by replacing T by its first barycentric subdivision.

Thus we can assume that G acts on T so that T/G has one edge. Let $e \in \delta d$. If d is narrow then it follows from 2.5 that there are only finitely many $b \in E$ for which $e \in \delta b$. Let eg = e, i.e. $g \in G_e$. Now $d \cap dg$ and $d^* \cap d^*g$ contain the vertices of e and so cannot be empty. Thus either $d \subset dg$ or $dg \subset d$. Suppose $dg \subset d$ but $dg \neq d$. If d is narrow then we have a contradiction since dg^m , $m=1, 2, \ldots$, are infinitely many distinct narrow cuts and $e \in \delta(dg^m)$. If we are dealing with Case 1 (so that d is possibly not narrow), then $d = {}^a d_1$, $d \subset d_1$ where $d_1 = (\widehat{c^*})^*$. Also since $eg \subset {}^a c$ it follows that $eg \subset d$. But $eg \subset d$ is narrow and the intersection of the $eg \subset d$ is narrow and the intersection of the $eg \subset d$ in $eg \subset d$ and so $eg \subset d$. An element of $eg \subset d$ must permute the elements of $eg \subset d$ and so the index of $eg \subset d$ is finite. This completes the proof of Theorem 4.1.

Corollary 4.2. Let the group G act on the graph Γ and suppose $e(\Gamma) > 1$ then either

$$G = A *_{C} B$$

or G is an HNN-group

$$G=gp(A,\,t|t^{-1}\,Ct=D)$$

where C, D are isomorphic subgroups of A, and in either case the subgroup C contains the stabilizer of a directed edge of Γ as a subgroup of finite index.

Proof. This follows easily from Theorem 4.1 using the Bass—Serre theory (see [2, p. 14]). ■

The decomposition is proper if and only if G does not stabilize a vertex of T. Now T/G has one edge. If there is a path in T of length at least three then there exists $g \in G$ and a directed edge $e \in ET$ such that eg > e. Thus by [2, p. 28] G does not stabilize a vertex of T. If Γ/G is finite, then using the techniques of 2.6 it can be shown that there exists $g \in G$ for which d is properly contained in dg or d^*g . Also there exists $g \in G$ for which d^*g_1 or dg_1 is properly contained in d. It follows that the diameter of T is at least three. Thus the decomposition of G induced by the action of G on T is proper if Γ/G is finite.

References

- [1] M. G. Brin, Splitting manifold covering spaces, Preprint, State University of New York, Binghampton.
- [2] W. Dicks, Groups, trees and projective modules, Lecture Notes in Mathematics 790, Springer, Berlin—Heidelberg—New York 1980.
- [3] M. J. DUNWOODY, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. 38 (1979) 193—215.
- [4] H. D. Macpherson, Infinite distance transitive graphs of finite valency, Combinatorica 2 (1) (1982) 63—69.
- [5] J. R. STALLINGS, Group theory and three-dimensional manifolds, Yale Mathematical Monographs 4 (Yale University Press, 1971).

M. J. Dunwoody

University of Sussex, Brighton, BNI 9QH, U. K.

Added in proof. The author has recently noticed that the following two papers contain results which have non-empty intersection with the results of this paper.

[6] L. Babai and M. E. Watkins, Connectivity of infinite graphs having a transitive torsion group action, *Arch. Math.* 34 (1980), 90—96.

[7] H. A. Jung, A note on fragments of infinite graphs, Combinatorica 1 (1981), 285—288.